欢迎访问皇族俱乐部

专注于填料、曝气器的生产销售

厂家直销,型号参数齐全,价格实惠。

全国咨询热线

13861513465

产品展示

新闻中心

填料

介电填料诱导杂化界面助力高负载锂金属电池

作者:皇族俱乐部 发布时间:2024-01-27 23:32:13
  

  物固态电解质取代有机电解液,有望解决液态锂金属电池的产气和热失控等问题。与其他种类聚合物电解质相比,室温下具有高电导率的PVDF电解质受到广泛关注。然而PVDF电解质中残存的DMF溶剂会与锂金属反应,生成低电导率/低机械强度的SEI,导致负极界面处锂离子的不均匀沉积和锂枝晶生长。当采用高负载正极时,会促进加剧上述副反应和锂离子的不均匀沉积,使得电池的库伦效率和循环寿命降低。虽能通过引入填料和改变有机溶剂来锚定阴离子和进一步溶解锂盐,提高锂离子迁移数和离子电导率,但是组装的电池只能在低负载的条件下工作。由于负极界面低的锂离子传输通量,当负极锂金属沉积面容量或正极载量较高时,PVDF基固态锂金属电池容量会急剧衰减。

  近期,清华大学深圳国际研究生院康飞宇&贺艳兵&柳明团队在国际材料学顶级期刊Advanced Materials上发表了题为“Dielectric Filler-induced Hybrid Interphase Enabling Robust Solid-State Li Metal Batteries at High Areal Capacity”的研究论文,该工作提出在PVDF电解质中引入高介电材料铌酸钠(NaNbO3,NNO)。在循环过程中NNO的Na+会与Li+进行交换,从而形成高杨氏模量,以NaF/LiF为主体的混合界面。同时NNO也会诱导PVDF的α相向β相转变,高极性的β相有利于锂盐的解离,来提升锂离子浓度和PVDF电解质的电导率(5.56×10-4S cm-1)。组装的Li-Li对称电池在3 mAh cm-2的面容量下可循环600h,NCM811-Li电池在2C的高倍率下循环2200次,即使在-20℃的低温下也可循环;同时也可匹配10 mg cm-2的高负载正极稳定循环。该工作提出了通过调控加入填料来生成混合界面,以此来实现高负载,长循环固态锂金属电池。

  红外和磁滞回线测试和证明NNO作为形核剂会诱导PVDF的α相向β相转变(图1b,c)。拉曼谱的解耦表明加入NNO后,PVDF电解质中自由的锂离子数大量增加(图1d,e)。此外,极性的NNO也会吸附FSI—阴离子,提高锂离子迁移数。得益于此,电解质的电导率和激活能都有大幅的增加(图1g)。NNO对DMF的吸附作用,使得DMF在PVDF电解质中分布均匀(图1h,i),有利于锂离子的均匀沉积。

  7Li固态核磁谱表明NNO的引入会在PVDF电解质中产生LNNO和[Li(DMF)x]+/LNNO两种新的锂离子传导路径(图4a,b)。DFT计算可知Li+在LNNO中的迁移势垒仅为0.38 eV。同时引入NNO后,PVDF电解质的交换电流密度也从0.17增加到0.42 mA cm-2。SEI的阿伦尼乌斯曲线表明,SEI中Li+的激活能一下子就下降,仅为23.58 kJ mol-1。同时DFT计算表明Li+/Na+杂化SEI中Li+的迁移势垒小于单一LiF相。循环后SEI的杨氏模量也从4.81提高到8.01 GPa,有益于抑制锂枝晶生长。

  开尔文探针显微镜测试表明采用PNNO-5电解质循环后的NCM811正极表面电势更小,说明NCM811/PNNO-5的界面电势变化更平缓,有利于界面Li+的迁移。原位XRD测试表明NCM811/PNNO-5/Li电池中,NCM811的H2到H3的相转变更充分,同时H1到M相转变的动力学的差距也大幅缩小,说明采用PNNO-5电解质有利于Li+在正极界面的传输。循环后的TEM表明:采用PNNO-5电解质循环后NCM811正极,结构更完整,CEI更薄。同时锂金属表明更致密,表面粗糙度也更低。

  该工作提出一种用于复合电解质的新型介质填料NNO,它不但可以调节界面反应和Li/电解质界面组分,还能控制Li+的输运。在循环过程中,NNO的Li+/Na+部分交换有助于形成具有高机械强度氟化Li/Na杂化SEI,这不仅有利于Li+在界面上的快速传输,而且还抑制了枝晶的生长,保证了高的Li沉积和剥离面积容量。此外,PVDF基体中的NNO可诱导其α-相向高介电β相转变,促进Li盐的解离,有利于Li+的输运。此外,LNNO的新产物在Li/电解质界面上提供了额外的离子传输路径,均匀了Li+通量。PNNO-5电解质使Li/Li对称电池在1、2和3 mAh cm-2的大容量下具备优秀能力的循环性能 。特别是与10 mg cm-2的高负载NCM811正极搭配,可稳定循环150次。高介电性的PNNO-5电解质降低了富Ni正极/电解质界面的电位差,促进了界面处离子的均匀输运,抑制了NCM811阴极的相变。本工作阐明了通过填料参与界面反应来优化界面性能,进而稳定高负载锂金属固态电池的重要性。

  原文标题:清华大学康飞宇&贺艳兵&柳明AM:介电填料诱导杂化界面助力高负载锂金属电池

  文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

  有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。

  设计 /

  的最新研究进展与展望! /

  集成解决方案。 PL5353A包含先进的功率MOSFET,高精度电压检测电路和延迟电路。 PL5353A被放入超小型SOT23-5封装中

  的超高速率和长寿命 /

  粉碎系统:该设备原理气体通过拉瓦尔喷嘴加速成超音速气流射入粉碎室,粉碎室中的物料被超音速气流加速成流态

  ,互相碰撞,互相破碎,以此来实现对物料的超细粉碎。 七、包装:筛分机、除磁机、包装机采用密闭

  的增稠幅度较小,填充量增大,可使基体的导热率有较大幅度提升。因此,当前用于制备高导热

  的导热系数、形状、粒径、用量等因素都会对最终产品的导热性能造成影响。另外,导热

  高导热系数材料 /

  失效。为了抑制非活性锂的形成和生长,要进一步了解非活性锂的形成机理和组成。

  中的超高理论比容量(3860 mAh·g-1)和超低氧化还原电位(相对于标准氢电极为-3.04 V)的诱人特性重新引起了人们的兴趣。

  【youyeetoo X1 windows 开发板体验】支持语音控制的AIoT智能终端设计

  嵌入式学习-ElfBoard ELF 1板卡- Uboot目录结构介绍

相关资讯